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An analysis of the motion and deformation of red blood cells between two parallel flat 
plates is presented. The motion is driven by an imposed pressure gradient in the 
surrounding fluid. Mammalian red cells are highly flexible, but deform a t  constant 
volume because the contents of the cell are incompressible, and at nearly constant 
surface area because the membrane strongly resists dilatation. Consequently, a 
minimum spacing between the plates exists, below which passage of intact cells is not 
possible. We consider spacings slightly larger than this minimum. The shape of the 
cell in this case is a disk with a rounded edge. The flow of the surrounding fluid is 
described using lubrication theory. Under the approximation that the distance 
between the plates is small compared with the cell diameter, cell shapes, pressure 
distributions, membrane stresses and cell velocities are deduced as functions of 
geometrical parameters. It is found that the narrow gaps between the cell and the 
plate are not uniform in width, and that as a result, membrane shear stresses are 
generated which increase in proportion to flow velocity. This contrasts with 
axisymmetric configurations, in which membrane shear stress remains bounded as 
cell velocity increases. The variation of cell velocity with spacing of the plates is 
similar to that previously demonstrated for rigid disk-shaped particles of cor- 
responding dimensions. 

1. Introduction 
The aim of this paper is to analyse the motion and deformation of a tightly fitting 

red blood cell between two parallel plates, driven by a pressure gradient in the fluid 
surrounding the cell. 

Mechanical properties of mammalian red blood cells have been determined 
experimentally. A thin, highly flexible, viscoelastic membrane surrounds a 
Newtonian fluid. The membrane strongly resists area changes, having a large 
isotropic modulus, and so red cells deform at constant volume and almost constant 
surface area (Canham & Burton 1968). As a result, there are lower bounds on the 
dimensions of passages that will permit passage of intact red cells. For typical human 
red blood cells, with area 135 pm2 and volume 90 pm3, a cylindrical tube must be at  
least 2.84 pm in diameter for cell passage. Halpern & Secomb (1989) analysed the 
mechanics and motion of cells in tubes with diameters slightly larger than this. 

Most theoretical studies of red blood cell motion in the microcirculation have 
assumed that microvessels are approximately cylindrical. However, red cells in the 
microcirculation must also traverse passages with non-axisymmetric geometries. 
Such passages may have near-minimal dimensions. For example, microvessels that 
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participate in blood flow regulation are able to constrict strongly, to the extent that 
red cell motion is obstructed, and the remaining passage is highly non-circular 
(Greensmith & Duling 1984). In  the spleen, red blood cells pass through narrow slits 
between cells comprising the walls of venous sinuses (Drenckhahn & Wagner 1986). 
In the lung, the pulmonary capillaries may be modelled as a space between parallel 
plates, whose width may decrease to near zero at  low capillary pressures (see Fung 
1990, p. 209). The geometry considered in this analysis is much simpler than those 
encountered by red cells in the above examples, but retains two important features. 
Firstly, the stresses acting on the cell are strongly non-axisymmetric. Secondly, the 
cell does not nearly fill the entire passage, as it does in a cylindrical tube with near- 
minimal diameter, and so the suspending fluid may flow around the cell, even if the 
cell velocity is small. 

For a red cell with the dimensions quoted above, the minimum spacing between 
two plates which permits passage of intact cells is 1.82 pm. The shape of a cell 
squeezed between two plates with this spacing (the critical shape) is a disk with a 
rounded edge (Halpern 1989), of overall diameter 8.32 pm. The profile of the rim is 
then very nearly a semicircle and we shall use this approximation here. We consider 
the case in which the distance between the plates is slightly larger than the minimum 
spacing, which we refer to as the near-critical case. The cell shape is then close to the 
critical shape, and the gap between the cell and the plates is much smaller than the 
distance between the plates. This distance is itself much smaller than the cell 
diameter (by a factor of about five for the dimensions quoted above). 

The analogous problem for a rigid particle with the critical shape has been 
analysed by Halpern & Secomb (1991). Here, we emphasize aspects of the problem 
relating to cell deformability. In  92, equations of membrane equilibrium and 
lubrication equations for the fluid flow around the cell are established. These 
equations are solved in 993 and 4, yielding estimates for fluid and cell velocities, cell 
shape and membrane deformation in the almost-planar region. 

2. Governing equations 
2.1. Geometry and boundary conditions 

The flow geometry is indicated in figure 1 .  Cylindrical coordinates ( r , O , z )  and 
Cartesian coordinates (2, y , z ) ,  moving with the cell, are used. Points on the 
membrane are identified in terms of 8 and s, the arclength measured from the axis. 
On the curved rim, $ is the angle between the membrane and the plates. We assume 
that the cell has mirror symmetry with respect to the midplane of the channel, 
z = 3, and with respect to the plane y = 0. The membrane adjacent to the lower plate 
is located a t  z = h(r, 8). The flow domain is divided into three regions : 

region I (the flat-disk region) : 0 < r < r l ,  
region I1 (the curved rim) : T~ < r < r2 ,  
region I11 (outside the disk): r 2 r2 ,  

Note that the gap width h jumps from &d to d between region I1 and region 111. 
We consider the case in which the entire cell travels with a uniform velocity, i.e. 

the membrane does not move relative to the cell. Transient membrane deformations 
may occur when the cell enters the channel (see 94). The formulation here applies to 
steady configurations. Then u = (ur, ug, u,) = 0 on the surface of the cell (regions I 
and 11). We assume that the cell is moving with speed u1 in the 8 = 7c direction 
relative to the plates. Therefore, in the particle frame, u = u1 i, on the plates ( z  = 0, 
z = d) ,  where i, = (cos 8, -sin 8,O) is the unit vector in the 8 = 0 direction. Far from 

h = h(r,  8) G d ;  
h = h(r,  8) < &; 

h = d.  
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FIQURE 1. Variables used to describe geometry of critical cell between two parallel plates, and 
regions used in analysis. 

the cell, the flow approaches unidirectional plane Poiseuille flow, with mean velocity 
u2 in the 9 = n direction relative to the plates. Therefore u-+ (ul - u2) i, in the particle 
frame as r -+ co, where ii is the z-average of u. 

2.2. Membrane equilibrium 
The equations of membrane equilibrium in the radial and azimuthal directions are 
(Timoshenko & Woinowsky-Krieger 1959) : 

and 

where t,,, tee and t,, are components of membrane stress and 7,. and re are external 
shear stresses. The equation for equilibrium of normal stress is 

where pi and p are the internal and external pressures. Since there is no relative 
internal motion of the cell, the internal pressure is a constant. The external stresses 
depend on the flow of the surrounding fluid. 

To complete the specification of the problem, constitutive relations for the 
membrane are required. We postpone introducing these until $4, and compute 
membrane stresses assuming that they can be achieved by suitable membrane 
strains. 
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2.3. Flow of surrounding fluid 
The flow of the suspending fluid satisfies the Stokes equations. The narrowness of the 
gaps between the cell and the plates suggests the use of lubrication theory. We use 
lubrication equations to describe the flow throughout regions I and 11. At the outer 
edge of region 11, the gap is no longer narrow relative to the radial lengthscale. 
However, Halpern & Secomb (1991) have argued that the lubrication equations still 
yield a good approximation in this region. The essential point is that the pressure 
gradient decays rapidly as the gap widens, so that errors in describing the flow in the 
regions of wider gap have little effect on the overall pressure field. 

We also use lubrication equations in region 111, leading to a Hele-Shaw flow 
problem. This approximation is based on the assumption that the distance between 
the plates is much smaller than the radial and azimuthal lengthscales. For typical 
human red cells, the ratio of cell width to cell diameter is about 0.22, suggesting that 
this assumption will yield a useful approximation overall. However, the assumption 
breaks down in a 'boundary layer' of width O ( d )  surrounding the cell (Halpern & 
Secomb 1991). The effect of the boundary layer on the external pressure field and on 
the cell velocity is equivalent to that of increasing the cell radius by a 'displacement 
thickness' of about 0.3d, and is not included here. 

According to the assumptions of lubrication theory, u, is negligible and pressure 
is independent of z. We non-dimensionalize as follows : 

(the factor of 12 simplifies subsequent expressions). Then the momentum and 
continuity equations are 

a w  
12VP = -, v -  u= 0, az2 

and the boundary conditions are 

U = U p i ,  a t  Z = O ,  U=kUpix  a t  Z = H  and D+(Up-l)ix as R-too,  

where k = 0 in regions I and I1 and k = 1 in region 111. 
The momentum equation may be integrated, yielding 

(2.6) 

U =  6 Z ( Z - H ) V P + U p  1 - ( 1 - k ) -  i,. (2.7) ( H "1 
Next, we define the flow rate 

H 

Q = (QR,Q,) = 1 UdZ = - H 3 V P + p ( 1  +k)Upi,. (2.8) 
0 

The continuity equation implies that 0 . Q  = 0, that is 

V . ( H 3 V P )  = +Up(l+k)i,.VH, 
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3. Cell shape and motion 

are matched at  the boundaries between regions. 
The equations derived in $2 are solved in regions I, I1 and 111, and the solutions 

3.1. Matching conditions 
Matching conditions in the fluid are as for rigid particles (Halpern & Secomb 1991), 
namely continuity of pressure and radial flow rate. The membrane stress component 
t,, is continuous at R = R, = rJd. At R = R ,  = rJd, the total curvature of the rim 
is approximately 2, since the rim profile is approximately semicircular with radius t ,  
and the curvature in the azimuthal direction is relatively small. Hence 

P'=P'', Q k = Q Z ,  TI,=Tf,I at R = R , ;  (3.1) 

, 2Qz = QZI, 2T;' = -PII1 a t  R = R,, (3.2) P I '  = P I 1 1  

where T, = t s s / (  12pu,) and the last condition follows from (2.3). Continuity of 
tangential flow rate cannot be imposed under the assumptions of $2, unless the 
'boundary layer' around the cell is included (Halpern & Secomb 1991). 

3.2. Region I 
In  the case of a closely fitting rigid particle, Halpern & Secomb (1991) showed that 
the pressure gradient in region I becomes large if the gap is very narrow. For a 
flexible cell, in contrast, the following argument shows that the pressure gradient in 
region I must be small. 

Estimates of membrane curvatures, K' and K", in regions I and I1 are 

K' = O(H,/R;) 4 1, K'' x 2, (3.3) 

where H ,  is the mean gap width in region I. In the near-critical case, we expect that 
the membrane is under tension over its entire surface (cf. Halpern & Secomb 1989). 
Let 12pu,T, be an estimate of the tension. Then the pressure differences, P' and P I 1 ,  

across the membrane in regions I and I1 are 

PI = O(H,T,/R!), PI' = O(T,). (3.4) 

(3.5) 

Clearly P' 4 PI', and therefore P' = 0 at leading order. From (2.9), it follows that 

H = H(Rsin8) = H(Y) 

in region I, i.e. the gap width is uniform in region I along lines parallel to the flow 
direction. The radial flow rate is then 

QL = @ Up cos 8. (3.6) 

3.3. Region 11 
The governing equations for region I1 are obtained by combining the equations of 
membrane equilibrium with those of lubrication theory, from 92. Under the 
assumption that the cell thickness, and hence the width of region 11, is small 
compared to the cell diameter, (2.10) may be approximated by 

Halpern (1989) showed that this approximation introduces a small error for rigid 
particles with typical cell dimensions. Near B = in, cose is small, and this 
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approximation may lead to unrealistic results, as discussed in $3.4 below. Equation 
(3.7) may be integrated : 

where K2 (8) = 4% (3.9) 

from (2.8), and so the radial flow rate is independent of R in this approximation. 
We use the same approximation to simplify the equations of membrane 

equilibrium, by neglecting derivatives and curvatures in the azimuthal direction. 
Also, since the rim is relatively narrow, (2.1) shows that variations of T, with R are 
relatively small, i.e. T, = T, (8). Equation (2.3) reduces to 

a4 
as T - =  -P. 

This is combined with the equations of lubrication theory to yield 

aH/aS = sin 4, 
a$/as = -PIT,, 

apps = gu, cos e(H-2 - H ,  ~ - 3 ) ,  

(3.10) 

(3.11) 

(3.12) 

(3.13) 

where H l ( 8 )  = H(R,sin8) is the gap width at  R = R,, and (3.11) follows from 
geometry. These equations are similar to those derived for the motion of 
axisymmetric red blood cells in cylindrical tubes (Halpern & Secomb 1989), and the 
same type of analysis can be performed here since 8 can be treated as a parameter. 

3.4 The transition region 
Between regions I and 11, curvature and, from (3.10), pressure change abruptly. 
Therefore, the solutions in regions I and I1 must be matched through a narrow 
transition region (cf. Secomb et at!. 1986; Halpern & Secomb 1989). The scalings in 
this transition region depend on the local gap width H I ( @  at the edge of region I. We 
seek solutions in which the variations of 4 are small, and introduce the following 
scalings : 

H =  H,H, ,  S-R, = H y S t ,  P = +imp,,  T, = +Rq,  4 = H?$,, (3.14) 

where 8, (the independent variable) and H,, 8, T,, 4, are all O(1) in the transition 
region, provided cos 8 is not small. For matching with region 11, the curvature d$/dS 
is 0(1 ) ,  and so a, = a4. The viscous drag on the particle in region I varies inversely 
with the gap width in the limit of narrow gap, while the driving pressure around the 
edge of the cell is independent of gap width in this limit. It follows from the zero-drag 
condition that Up is proportional to the mean gap width in the limit of small gaps, 
so we let Up = H ,  (8)U,(O). The zero-drag condition is considered in more detail in 
$3.6. If the above scalings are substituted into (3.11)-(3.13), and powers of H ,  are 
equated, then it is found that a, = a4 = 4 and a2 = a3 = -4. The following system is 
obtained at  leading order in the transition region 

(3.15) 

(3.16) 

(3.17) 
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The tension is eliminated by introducing a new independent variable 7,: 

~j = r(St-Strn), Ht =f3 ( ~ j ) ,  (3.18) 

where 1-3 = cos e u,/q (3.19) 

For convenience, St,  is chosen so H,  = t when S, = Stm. Also, we distinguish between 
the leading the trailing edges of the cell by setting j = 1 at the leading edge 
(in < 181 < n) and j  = 2 at the trailing edge (181 < in), since rchanges sign at 8 = & 2.. 

fy = 6( f i3  -Jz), (3.20) 

Substituting the new variables into (3.15)-(3.17), we obtain 

where f;- = i3fj/i3q, and fj(0) = $. For matching with region I, 

f ; + O  as ql+co and f ; l + O  as yz+-co. (3.21) 

Linearizing (3.21) about fi = 1 gives two growing oscillatory solutions and one 
decaying monotonic solution in the positive q, direction. It follows that in the 
transition adjacent to the leading edge, f, is uniquely determined, whilst at the 
trailing edge a one-parameter family of solutions exist. Numerical integration of 
(3.20) shows that 

f r + k ,  w 2.123 as ql+ -co. (3.22) 

From (3.15) and (3.16), it follows that pressure in the gap and membrane curvature 
rapidly approach values independent of S in region I1 beyond the transition region. 
For matching with region 111, the pressure is P I 1  (Rz, 8). From (3.2), (3.12), (3.14) 
and (3.18) we deduce that 

k , P ' = - = - P  11* ( R,,8)/Ts(8) = 2 as (3.23) 

in region 11. 

the gap width a t  the leading boundary of region I: 
When Tis  written in terms of the original variables, (3.23) yields an expression for 

(3.24) 

for ;R < 1/31 < R .  This analysis shows that the gap width at the boundary between 
regions I and I1 in the leading part of the cell is determined by the interaction 
between fluid and membrane mechanics in the transition region, and depends on the 
local pressure difference across the membrane. According to ( 3 4 ,  the gap width 
throughout region I is determined by the condition that H(R, sin 8)  = H ,  (d ) ,  i.e. the 
gap width is everywhere equal to the gap width at the corresponding point (same Y- 
coordinate) at  the leading edge of region I. At the trailing edge of region I, (3.5) 
implies that 

H I  (8)  = H ,  (n-18I) for 181 < in. (3.25) 

This provides the additional boundary condition which determines uniquely the 
solution fz to (3.20). Since f z  has oscillatory behaviour, the membrane bulges 
outwards slightly in the transition region at the trailing edge (Halpern & Secomb 
1989). 

According to (3.24), the gap width H ,  approaches zero as €'+ -+in. This unrealistic 
behaviour occurs because the two-dimensional approximation used to obtain (3.7) is 
not uniformly valid near these points. To model this, an inner solution could be 
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obtained in the neighbourhood of 8 = &$n. However, this region contributes little to 
parameters such as the total shear force on the particle, and so we omit such an 
analysis. 

3.5. Region 111 
In region 111, H = 1 and the pressure equation (2.10) reduces to Laplace's equation 

(3.26) 

The general solution with the required symmetry is given by 

Q) 

P I 1  (R, e) = P, + R  cos e + R-(~ , -%~ cos (2n - i)e, (3.27) 

where the condition of plane Poiseuille flow at infinity has been applied. The radial 
flow rate is obtained from (2.8) : 

n-1 

m 

Qgl = (Up- 1) cos 0 = C (2n- 1) R-2n a, cos (2n- 1)e. 

Applying the matching condition (3.1) to (3.6) and (3.9), we obtain 

(3.28) 
n-1 

Q ~ I  ( R ~ ,  e) = 2 ~ ,  (e) = up H, (el cos e. 
3.6. The zero-drag condition 

Since inertial and buoyancy effects are negligible, the total fluid force on the cell is 
zero. By symmetry, only forces in the flow direction need to be considered. If ,uu2 dF, 
is the pressure force and pu2dF7 is the shear force on a cylindrical control volume 
surrounding the cell, then 

F7+F,  = 0. (3.30) 

The shear force is dominated by the contribution from region I, since the gap widens 
rapidly in region 11. Since the pressure gradient in region I is negligible, the velocity 
profile in the gap is linear, and 

(3.29) 

F ,  = 8r2&R:cos2ede. (3.31) 

The pressure force acting on the control volume is approximated by 

F ,  = - 1 2 ~ ,  I" PIII  ( R ~ ,  e) cos e de = - 1 2 d ;  (1 + ~ ; 2 a , ) .  (3.32) 
J -n 

3.7. Geometrical constraint on gap width 
The gap width depends on the surface area and volume of the cell, and on the spacing 
between the plates. When the spacing between the plates equals the width wo of the 
critical cell shape, the gap width must be zero. For slightly wider plate spacing, the 
constraints of fixed surface area and volume are applied approximately by specifying 
that the mean thickness of the cell in region I remains equal to wo. The mean gap 
width therefore satisfies 

(3.33) 
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and using (3.28) and (3.29) we find that 

I 2  

Up H ,  = @I (R,, 8) cos 8d8 = Up- 1 +a,/Ri. 
K 

315 

(3.34) 

3.8. Asymptotic solution in the limit of small cell velocity 
To compute the cell shape and motion, equations (3.24), (3.29), (3.30) and (3.34) are 
solved for Po, Up, the coefficients a, and the function H ,  (8). First we assume that 
Up < 1 ,  so that a,/Ri x 1 from (3.34). From (3.28) and (3.29), a, = O(UpH,)  for 
n > 1. Now, according to the scalings in $3.4, Po must be O(H$), i.e. in this 
approximation, the pressure across the membrane is dominated by a large constant 
term, with an O( 1) term proportional to cos 8 and small corrections a t  higher angular 
frequencies. The gap width H ,  (8) is proportional to Icos 813 and from (3.33), we obtain 

From (3.31), 
F, = (32/~)1(t)I(;)R: U J H ,  

(3.35) 

(3.36) 

and the zero-drag condition shows that 

Up = @21(g)-11(;)-1 (R,/R,)2H, w 11.61 (R,/R,)2H,. (3.37) 

In comparison, if uniform gaps with width H ,  are assumed, the same analysis yields 
(3.37) with the numerical coefficient 12 in place of 11.61. Therefore, the non- 
uniformity of the gap has only a slight effect on the particle velocity. 

The constant leading-order term Po in the pressure difference across the membrane 
may now be estimated. In  (3.24), we replace P"I(R,,8) by Po, and substitute the 
estimates for H ,  (8) and Up from (3.35) and (3.37), yielding 

Po = - (4k1)"d(p)]'I(;)-1 (R2/R,)2H$. (3.38) 

For the typical red cell dimensions, R, = 1.64 and R, = 2.10, and (3.27) then gives 

(3.39) PIII (R,, 8) = - 2 . 9 2 ~ 2 +  4.20 cos e + ~ ( i ) ,  

confirming that the constant term is in fact dominant for small gap widths. 

3.9. Numerical solutions for finite cell velocities 
The large numerical coefficient in (3.37) implies that cell velocity increases rapidly 
with increasing gap width. Therefore, we may consider cases in which H ,  remains 
small, about 0.1 for instance, but Up is not small. If we assume that Up = 0(1), the 
scaling arguments in $3.4 yield almost the same equations as before, the only changes 
being that U, is replaced with Up and a, = as = -% instead of -4. The analyses in 
$53.5-3.7 are unchanged. However, the approximations for a, in $3.8 no longer 
apply, and (3.29) and (3.30) are solved numerically. Substituting (3.28) and (3.24) in 
(3.29) and integrating over [0, XI, we obtain 

a, ' = " [ 1 up cOs 19 1' cos 8 COB (2n - 1)  8 do, 
(2n- 1)x 6 P 1  (Rz, 0 )  

(3.40) 

where a; = a,+Ri(Up-l)  and a; = a, for n > 1. 
For values of H ,  in this range, region I1 contributes significantly to the total shear 

force F,, leading to a modified zero-drag condition (cf. Halpern & Secomb 1991, $3.6). 
11 FLM 244 
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FIGURE 2. Cell shape at  several cross-sections perpendicular to the flow direction, for the case 

rl = 3.25 pm, r2 = 4.16 pm, wo = 0.91 pm, d = 1.98 pm. 

Using (3.24), the shear force F, and the mean gap width H ,  in the geometrical 
constraint (3.33) may be written in terms of integrals of powers of PIr1 (Rz, 8) and 
cos8. We then use an iterative approach to solve (3.30), (3.32), (3.33) and (3.40) for 
Po, Up, H ,  and a:. Initially, we assume that a: x 0 and solve the nonlinear system 
(3.30), (3.32) and (3.33) for Po, Up and H,. Then we use (3.40) to compute new 
estimates for a;. This procedure is repeated until convergence is achieved. 

Figure 2 shows the computed shape of the cell at  several cross-sections 
perpendicular to the flow direction. For simplicity, only the shape in regions I and 
I1 is graphed. In region 11, the rim is semicircular in profile, and oblique sections are 
obtained when X > 0. The location of the narrow transition region between regions 
I and I1 is indicated by a vertical dashed line. The gap width between the cell and 
the wall in region I is seen to decrease with distance from the axis of symmetry 
parallel to the flow direction. 

Figure 3 shows the variation of Up as a function of H,, according to the theories 
of $93.8 and 3.9. Corresponding results for a rigid particle with critical shape are 
included for comparison, from Halpern & Secomb (1991). The results for rigid and 
flexible particles do not differ appreciably, despite the other significant differences 
between the two cases. Cell velocity may be smaller or larger than mean bulk velocity 
depending on the spacing of the plates, with equality when the width of the cell is 
about 70 % of the channel width. As the gap width increases, the asymptotic theory 
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FIGURE 3. Up as a function of H,,, : -, flexible cell ; --, rigid particle of critical shape ; 
---, asymptotic result in limit of small Up. Values of r l , r2  and wo a8 in figure 2. 

of $3.8 increasingly overestimates Up, since it does not take into account the 
reduction of the driving pressure when the cell moves with the flow, or the 
contribution of region I1 to FT. 

In this analysis, we have assumed that the overall shape of the cell in the ( X ,  Y ) -  
plane is circular. For very narrow gap widths, this is guaranteed by the constraints 
of surface area and volume, which dictate that the cell must remain close to its 
critical shape. As the gap width increases, for instance for values H ,  of about 0.05, 
the geometrical constraints no longer guarantee that the shape is approximately 
circular. However, (3.39) shows that the pressure difference, and hence the membrane 
tension, still remains approximately uniform around the circumference of the cell for 
such gap widths. This uniform stress presumably tends to maintain the circular 
shape of the cell. Analysis of overall shape changes would require relaxation of some 
of the simplifications of the model, including the assumptions leading to (3.10). 

For sufficiently large gap widths, the overall cell shape probably becomes 
significantly distorted, but the main features of the present analysis should still 
apply. For instance the conclusion that gap width is uniform in the flow direction in 
region I is independent of the shape of region I. Similarly, the equations presented 
in the next section concerning membrane strain in region I will still apply, and the 
qualitative behaviour will be similar. However, if the overall shape is distorted, the 
mean gap width H ,  is necessarily smaller than the estimate (3.33), and so the particle 
velocity is lower than estimated above. In  this case, the estimates shown in figure 3 
would represent upper bounds. 

4. Strain/stress analysis of region I 
We next consider the membrane strains that will result from the fluid stresses 

implicit in the above analysis. For simplicity, we restrict our attention to region I, 
although membrane strain will also occur in region 11. 

11-2 
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4.1. Membrane equilibrium 
Since the curvature is very small, we may treat the membrane as essentially two- 
dimensional. We define in-plane stress resultants KT~,, KT,, and KT,,, where K is the 
elastic modulus. The equations of membrane equilibrium are 

& 8% aT,, = 
ax1 ax, H ( X , ) '  

aT,, - -+- - 0, axl ax, 
where H ( X , )  is the gap width in region I, (X,,X,) = ( X ,  Y) and E = ,UU,/K is a ratio of 
viscous to elastic forces. 

In analogous axisymmetric geometries, the fluid stresses can be balanced by 
isotropic membrane tension (Secomb et al. 1986; Halpern & Secomb 1989). Here, if 
we assume that the membrane stress is isotropic, i.e. T,, = T,, and T,, = 0, then since 
H ( X , )  is not a constant, (4.1) and (4.2) are inconsistent. Therefore membrane 
equilibrium can only be achieved if shear resultants are generated. 

4.2. Constitutive relations for the membrane 
Consider a deformation in which the stretch ratios in principal axes are A, and A,. We 
suppose that the corresponding membrane stresses in principal axes may be 
expressed in terms of a strain-energy function: 

(4.3) 

Since membrane area is conserved, the constraint A,A, = 1 must be imposed and an 
unknown isotropic stress !P (analogous to the hydrostatic pressure in incompressible 
flow) must be added. For consistency with Evans & Skalak (1980) and Secomb et al. 
(1986) we assume that w = i ~ ( A f + A i ) ,  yielding 

q = A t + P '  and Q = A i + P .  (4.4) 

Other forms of strain-energy function for red cell membrane have been proposed 
(Skalak et al. 1973; BarthBs-Biesel & Rallison 1981). All are equivalent for small 
strains. 

be the position of a point of the membrane in the 
reference configuration, and label the corresponding point in the final configuration 
X = X(5) .  Define the 2 x 2 relative deformation tensor 

For general deformations, let 

Then w = +K tr  (C * CT), and by a rotation from principal to coordinate axes, it is 
found (cf. Barthks-Biesel & Rallison 1981) that 

T =  C-CT+TO/. (4.6) 

4.3. Small deformations 
First we consider the case of small membrane strains, for E sufficiently small. Let 

X = 5 +x(& where &/a< 6 1. (4.7) 
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The condition of area conservation implies that laX/acl = 1 ,  and so 

axl/axl + axz/ax2 = o 
and a function, $, may be introduced such that 

x1 = awax,, xZ = -a$/axl. 
From (4.5) and (4.6), the stress is to leading order 

a,$ a,+ 
12-ax; ax; +TO, T ----, (4.10) T,, = 1+2- axl ax, 

Substituting in the membrane equilibrium equations (4.1) and (4.2), and eliminating 
TO, we find 

V $ = -  4 aH(x2)-1/axz. (4.11) 

Boundary conditions are obtained by considering the outer edge of the cell, 
R = R,, which is located in the plane 2 = i. By symmetry, there is no membrane 
displacement across this plane, and no membrane shear stress on it. Since the rim 
(region 11) is relatively narrow compared to the radius of region I, and the shear 
stresses in region I1 are less than in region I, the same boundary conditions apply 
approximately at  R = R,. We therefore set 

(4.12) 

We seek a particular solution in the form eg(X,) where from (4.11), 

g”’(X,) = -H(XZ)-’, i.e. g”’(R,sin 8) = -Hl (8p. (4.13) 

From here on, we assume that H ,  (0) is given by (3.35), the result for small particle 
velocity Up. The same procedure applies if Up is not small, and an example is given 
by Halpern (1989). Integrating, we obtain 

g”(Rl sin 8)  = -3 lcos521;dSZ. 
4:!: 1 

This may be expressed as a Fourier series 

where 

00 

g”(Rl sin 8 )  = C b, sin (2k- l)8, 
k-1 

161($)R, ” 
~ 0 ~ ~ 8 ~ 0 ~ ( 2 k - l ) 8 d 8 .  

bk = -(2k-1)nzHm P 
Equation (4.15) is integrated twice to yield 

m 

g(R, sin 8) = -I&; C cksin (2k- 1 )  8, 
k-1 

+- ‘k-1 where C1 = b l+b , ,  c k  = 
(k- 1) (2k- 1 )  

The solution of (4.11) and (4.12) is 

$(R, 8)  = E [ $ ~  (R ,  8) +g(R sin 0)] where V4$, = 0, 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 
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FIGURE 

- 1  0 1 
X 

4. Membrane deformation in region I : contours of @. Values of r l ,  r2 and w, as in 
figure 2. 

with boundary conditions at  R = R,: 

sin 8 $ = - g  -J--- ’ - -g’(Rlsin8)-cos28g”(R,sin8). (4.19) 
0 , ~2 ae2 aR2 R,  

The general solution to (4.18), with the required symmetry and finite a t  the origin, 
is 

$,, = (A,R2k-’+BkR2k+1)sin(2k-1)~. (4.20) 
00 

k-1 

Applying the boundary conditions (4.19) gives 

A ,  + R: B, = i$!-2k C, (4.21) 

and (2k-1) (4k-3)Ak+(8k2-2k+1)R:B, = @:-2kdk ,  (4.22) 

4k-3 b, 4k-1 
where d ,  = 3b2-5b,, dk = - bk-,+---+- bkfl for k > 1 

k - 1  k ( k -  1 )  k 

The coefficients b, are evaluated numerically, and A ,  and B, are obtained by solving 

Contours of $ are plotted in figure 4. From (4.9), the displacement is parallel to the 
contours, and proportional to the density of contours. The membrane is dragged 
backwards at the extremities of the cell and moves forward on the centreline. 
Maximum displacement occurs at  the extremities. Assuming typical values for shear 
elastic modulus, K = 0.0042 dyn/cm, and plasma viscosity, p = 1 cP, and a mean gap 
width H ,  = 0.045, the predicted maximum membrane displacement is about 1 pm 
when the cell velocity is 0.1 cm/s, and the maximum membrane stretch ratio is less 
than 1.2. Based on these estimates, the small-deformation theory is applicable for the 
above parameter values. At larger velocities, or smaller gaps, large deformations 
occur, but the membrane deformation is likely to be qualitatively similar. 

It is interesting to note that the viscous resistance of the membrane to  time- 
dependent deformation is analogous that of a viscous fluid to two-dimensional flow 
(Secomb & Skalak 1982), and is therefore governed by the equations as developed in 
this section, with the exception that the velocity replaces the displacement in (4.9), 
and the membrane viscosity replaces the elastic modulus. Consequently, figure 4 also 
depicts the streamlines of the membrane velocity which would occur if the same 
shear stress were applied suddenly to initially unstressed membrane to region I. 

(4.21)-(4.22). 
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5. Discussion and conclusions 
From this analysis, we may describe the shape of a tightly fitting red cell as it 

squeezes through the space between two parallel plates. The overall shape is a disk 
with almost flat faces (region I) and a curved rim (region 11). A narrow transition 
region, in which pressure and membrane curvature vary rapidly, separates regions I 
and 11. The gap width at the boundary of region I varies with circumferential 
position. At each point in the leading part of the boundary (in < 181 < n), the gap 
width is uniquely determined by the local ratio of component of cell velocity to 
membrane tension. This gap width decreases towards the extremities of the cell 

Within region I, the pressure in the gap is approximately uniform. This contrasts 
with the results of Halpern & Secomb (1991) for rigid disk-shaped particles, in which 
large pressure gradients were predicted in region I for very narrow gaps. For flexible 
particles, the uniform pressure in the gap implies that the gap width is uniform in the 
direction parallel to the flow. This condition dictates the gap width at  the trailing 
boundary of region I (It91 <in). In  the transition region, the gap width varies 
monotonically in the leading part of the cell, but oscillates in the trailing part. 

Since the gap width in region I is not uniform, the fluid stresses on the membrane 
cannot be balanced by isotropic tension in the membrane. Shear stresses are 
generated within the membrane, which increase in proportion to flow velocity. 
Consequently, membrane shear strain must also increase with increasing flow 
velocity. This contrasts with the case of an axisymmetric cell in a cylindrical tube, 
in which in-plane membrane shear stress and strain remain bounded as cell velocity 
increases. 

In cylindrical tubes, red blood cells travel faster than the mean bulk flow since 
they tend to travel along the axis of symmetry. Hence, the tube haematocrit (volume 
fraction of red cells) is always less than the discharge haematocrit (flow fraction of 
red blood cells). This is known as the Fahraeus effect. In channels, however, red cells 
can travel slower than the mean bulk flow if the gaps between the cell and the walls 
are narrow. In this case, ‘tube’ hematocrit H ,  is elevated relative to discharge 
hematocrit H,, according to the relation H , / H ,  = U;’. The difference lies in the fact 
that in slots the suspending fluid can easily bypass the cell, so that the cell velocity 
can be much less than the mean bulk velocity. The variation of cell velocity with 
spacing of the walls for flexible particles is similar to that previously predicted by 
Secomb & Halpern (1991) for rigid disk-shaped particles of corresponding dimensions. 

In summary, this analysis demonstrates two phenomena accompanying motion of 
red blood cells through narrow parallel-sided channels that are not present in 
axisymmetric tubes : an increase in local tube hematocrit relative to the discharge 
hematocrit ; and the generation of shear stresses in the cell membrane, which increase 
unboundedly with increasing cell velocity. Both phenomena probably also occur in 
narrow pathways with other, more complicated non-axisymmetric geometries, such 
as are encountered by red blood cells in the microcirculation. 

( B =  kin) .  
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